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The relation between chaotic behavior and complexity for one-dimensional maps 
is discussed. The one-dimensional maps are mapped into a binary string via 
symbolic dynamics in order to evaluate the complexity. We apply the complexity 
measure of Lempel and Ziv to these binary strings. To characterize the chaotic 
behavior, we calculate the Liapunov exponent. We show that the exact normalized 
complexity for the logistic map~ [0, l] ~ [0, l],f(x) = 4x(l - x) is given by 1. 

Since the discovery of chaotic attractors, chaos has become an important 
concept in nearly all branches of  the natural sciences. The difference and 
differential equations which are believed to govern our natural world and 
may exhibit chaotic attractors are widely discussed in literature (see, for 
example, Steeb 1992a,b, 1996). The simplest systems showing chaotic behav- 
ior are one-dimensional maps J2 1 --~/,  where I is an interval. A definition 
for chaos is as follows: Let X be a set. The mapping g: X --~ X is said to be 
chaotic on X if (1) g has sensitive dependence on initial conditions, (2) g is 
topological transitive, and (3) periodic points are dense in X. Here we use 
the Liapunov exponent to characterize chaos. The exponent measures the 
sensitive dependence on initial conditions. 

Many different definitions of  complexity have been proposed in the 
literature. Among them are: algorithmic complexity (Kolmogorov-Chait in)  
(Chaitin 1987), Lempe l -Z iv  complexity (Lempel and Ziv, 1976), the logical 
depth of  Bennett (Bennett, 1988), the effective measure complexity of  
Grassberger (Grassberger, 1986), the complexity of  a system based in its 
diversity (Huberman and Hogg, 1986), the thermodynamic depth (Lloyd and 
Pagels, 1988), and a statistical measure of  complexity (Lopez-Ruiz et  al., 
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1995). In the following we consider the Lempel-Ziv complexity. A definition 
of the complexity (Chaitin, 1987) of a binary string (a string of  zeros and 
ones) is given by the number of  bits of  the shortest computer program which 
can generate this string. A general algorithm which determines such a program 
cannot be given. Lempel and Ziv have chosen from all possible programs 
one class that allows only two operations: copying and inserting. For the 
reconstruction of the given binary string of length n, using these two opera- 
tions, they have introduced a complexity measure c(n).  Here an algorithm 
can be given. Of course, a binary string consisting only of O's (or l 's) must 
have the lowest complexity, namely 2. A string consisting of a sequence of 
0 l ' s ,  i.e., ' ' 0 1 0 1 0 1 . . .  01 ,  ' ' has complexity 3. 

Let us now describe how the complexity (Lempel and Ziv, 1976; Steeb, 
1996) is evaluated. Given a binary string S = s is2  . . .  sn of finite length n, 
let A* denote the set of all finite length sequences (strings) over a finite 
alphabet A (in our case {0, 1}). The quantity S(i, j )  denotes the substring 
S(i, j )  := sisi+l �9 �9 �9 sj. A vocabulary of a string S, denoted by v(S),  is the 
subset of A* formed by all the substrings, or words, S ( i , j )  of S. The complexity 
in the sense of Lempel and Ziv of a finite string is evaluated from the point 
of view of a simple self-delimiting learning machine, which, as it scans a 
given n-digit string S = s~ s2 �9 . .  s ,  from left to right, adds a new word to 
its memory every time it discovers a substring of consecutive digits not 
previously encountered. Thus the calculation of  the complexity c(n)  proceeds 
as follows. Let us assume that a given string Sl s 2 . . .  s ,  has been reconstructed 
by the program up to the digit Sr and that Sr has been newly inserted, i.e., it 
was not obtained by simply copying it from s~s2 . . .  s,._~. The string up to 
sr will be denoted by R := s~ s 2 . . .  Sr ~ where the o indicates that sr is newly 
inserted. In order to check whether the rest of R, i.e., S~§ s~§ �9 sn, can be 
reconstructed by simple copying or whether one has to insert new digits, we 
proceed as follows: First, one takes Q - s~§ and asks whether this term is 
contained in the vocabulary of the string R so that Q can simply be obtained 
by copying a word of R. This is equivalent to the question of whether Q is 
contained in the vocabulary v(RQ'rO of RQ'rr, where RQ'rr denotes the string 
which is composed of R and Q (concatenation) and "rr means that the last 
digit has to be deleted. This can be generalized to situations where Q also 
contains two (i.e., Q = s~+~ Sr+2) or  more elements. Let us assume that sr+~ 
can be copied from the vocabulary of R. Then we next ask whether Q = 
Sr§ Sr+2 is contained in the vocabulary of R Q w  and so on until Q becomes 
so large that it can no longer be obtained by copying a word from v(RQ~r) 
and one has to insert a new digit. The number c of production steps to create 
the string S, i.e., the number of newly inserted digits (plus one if the last 
copy step is not followed by inserting a digit), is used as a measure of the 
complexity of a given string. Of course, a binary string consisting only of 
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O's (or l's) must have the lowest complexity, namely 2, since 0o000 . . . .  A 
string consisting of a sequence of 0 l ' s ,  i.e., " 0 1 0 1 0 1 . . .  01," has complex- 
ity 3, since 0 o l o 0 1 0 1 . . .  01. In order to obtain a complexity measure which 
is independent of the string length, we use a normalized complexity measure. 
For very large strings it makes sense to normalize them. To normalize them, 
we consider the interval [0, 1]. The rational numbers in this interval are of 
Lebesgue measure zero. For almost all numbers in the interval [0, 1] (the 
irrational numbers) the string of zeros and ones which represents their binary 
decomposition is not periodic. Therefore almost all strings which correspond 
to a binary representation of a number x e [0, 1] should be random and have 
maximal complexity. The complexity tends to the same value for n ~ 0% 
namely n/log2 n. We use this quantity to normalize the complexity c(n). Thus 
the largest value the complexity can have is equal to 1. 

Next we have to find a binary string from the one-dimensional map. 
This is done by using symbolic dynamics (Steeb, 1992a,b; Fang, 1994). To 
construct the symbolic dynamics of a dynamical system, the determination 
of the partition and the ordering rules for the underlying symbolic sequences 
is of crucial importance. In the case of one-dimensional maps, the partition 
is composed of all the critical points. We consider maps j~ [0, 1] ~ [0, 1] 
with one critical point at x = 1/2. Thus we divide the phase space into two 
intervals [0, 1/2) and [1/2, 1]. If the iterate is in the interval [0, 1/2), we map 
into 0, and if the iterate is on the right-hand side, we map into 1. When we 
consider, for example, the logistic map Xt+l = 4x,(1 - xt) and x0 = 1/3 we 
find the sequence " 0 1 0 1 0 1 1 0  . . . .  " 

The rational numbers in the interval [0, 1] are of Lebesgue measure 
zero. Thus for almost all numbers in [0, 1] (i.e., for all irrationals) the string 
of zeros and ones which gives their binary representation is not periodic. 
Therefore, almost all strings which correspond to a binary representation of 
a number in the interval [0, 1] are random and have maximal complexity. 
Lempel and Ziv (1976) have shown that for almost all x e [0, 1] the 
complexity c(n) of the binary string which gives the binary representation 
tends to the same value 

n 
lira c(n) - b(n) - 
n-~ log 2 n 

Thus b(n) gives the asymptotic behavior of c(n). Thus we normalize c(n) 
with respect to b(n). A C+ + program that finds the complexity c(n) for a 
given string of length n is available on request from the authors (http:// 
zeus.rau.ac.za/steeb/steeb.html). 

The logistic map is the most studied equation with chaotic behavior. 
All quantities of interest in chaotic dynamics can be calculated exactly. 
Examples are the fixed points and their stability, the periodic orbits and their 
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stability, the moments, the invariant density, topological entropy, the metric 
entropy, Liapunov exponent, autocorrelation function, and the exact solution. 
The Liapunov exponent for almost all initial conditions is given by ln(2). 
The map is also ergodic and mixing. 

We now show that the normalized complexity of the logistic map is 
given by 1. The tent map g: [0, 1] ---) [0, 1] 

{22~ if x ~ [0, 1/2] 
g(x):= 1 - x )  if x E (1/2, 1] 

is chaotic if the initial value x0 is an irrational number in the interval [0, 1]. 
Thus, as described above, the symbolic dynamic leads to a binary string with 
maximal complexity if the initial value is an irrational number. Thus the 
normalized complexity is 1 for n ~ oo. Moreover, we notice that the Liapunov 
exponent is equal to In 2 for a chaotic orbit. 

Next we show that the tent map and the logistic map are topologically 
conjugate. Let f: A ~ A and g: B ~ B be two maps. f a n d  g are said to be 
topologically conjugate if there exists a homeomorphism h: A ---) B such that, 
h o f = g o h. The homeomorphism h is called a topological conjugacy. 
Mappings which are topologically conjugate are completely equivalent in 
terms of their dynamics. For example, if f is topologically conjugate to g via 
h, and p is a fixed point for f,  then h(p) is a fixed point for g. The Liapunov 
exponent and the complexity are preserved under the homeomorphism h. 
Now the tent map and the logistic map are topologically conjugate. The 
homeomorphism (which is even a diffeomorphism) h: [0, 1] ~ [0, 1] is given 
by h(x) = (2/'rr) arcsin x/~. Since the complexity is preserved under the 
diffeomorphism h, we proved that the normalized exact complexity of the 
logistic map is equal to 1. 

Finally, a comment is in order in calculating the Lempel and Ziv com- 
plexity. We assumed that the information needed in Lempel and Ziv coding 
is one unit for each new word. Only then do we obtain complexity 3 for an 
alternating string " 0 1 0 1 0 1 0  . . . .  " and only then would a random string 
have complexity n/log2 n. One is of course free to count complexity in any 
units one wants. The usual units are bits. In this case the information needed 
to specify one among n words is ~-log2 n instead of 1. Thus the Lempel and 
Ziv complexity of a fully random binary string is 1 bit/symbol and not n~ 
log2 n units. The average Lempel and Ziv complexity per symbol for random 
strings coincides with the Shannon entropy, and hence the Lempel and Ziv 
complexity per symbol for the logistic map at fully developed chaos is equal 
to 1 bit/symbol. This assumes already the limit n ~ ~. For finite n there are 
several sources of logarithmic corrections, one of them being that the Lempel 
and Ziv complexity is only defined for finite strings in this picture, whence 
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one has to specify also the string length. Thus the Lempel and Ziv complexity 
for the alternating string " 0 1 0 1 0 1 0 . . . "  of  length n is -->log2 n in this 
picture, and not finite. 
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